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Abstract: Many Calculus books discuss Lorenz curves and Gini indices,
but usually they assume that the Lorenz curve is given, and then computing
the Gini index is a rather simple exercise in integration. In this paper we will
see how the Gini index can be computed by a rather complicated multistep
procedure, starting with the income distribution. The items that are touched
include integration by parts and by substitution method, improper integrals,
parametric curves and area under parametric curves, inverse functions, and
solving equations, transformations of functions, and even global optimization.
Therefore this example could serve as a rather complex project in Calculus
towards the end of the semester, combining many of the topics covered.

Inequality of income or wealth is a very important and also controversial topic.
Christians and socialists claim equality as the ideal. Liberals and economists insist
that some extend of inequlity is unavoidable, and even necessary for a prospering
society. Still all agree that too much inequality may be dangerous for the stability of
society. We, as humble mathematicians, concentrate in this paper on the modest task
to measure inequality.

Two of the tools that have been proposed are Lorenz curve and Gini index. See
[K 2008] and [X ?] for surveys on the vast literature on these topics. In our paper
we demonstrate how many classical features of an ordinary Calculus curriculum are
touched when these questions are attacked, and we will propose the topic as an ex-
tended applied project for the Calculus classroom

1 Income Distributions

In real countries, statisticians count how many persons (or households) fall in different
ranges of income, like below $10,000, between $10,000 and $20,000, and so on. Instead
of using the frequencies, one might want to use relative frequencies—the ratio of number
whose income lies in the corresponding interval and the whole popluation. These
numbers are usually presented in a table, but can also be graphed. Such graphs are
called bar graphs. The larger the intervals for income, the less precise the picture
gets. For this reason, one may be tempted to increase the number of categories (also
called classes) considered and decrease their width. However, for real data the graph
one obtains will eventually look very coarse and less telling, having most frequencies
equal to 0 except some, which are equal to 1/N, where N is the number of individuals
considered. Examples are given in Figures 1 and 2 for a data set of 100 numbers and
10 classes respectively 400 classes.
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Figure 2: a bar graph with 400 classes

But if we assume very large populations of millions of persons, and don’t overdo
this process of making the intervals smaller, the histogram may look close to a smooth
curve. These curves are considered here.

An income distribution f(t), either defined on a closed interval 0 < ¢ < b or
defined for all ¢ > 0, obeys f(¢) > 0 for all ¢ in the domain, and the additional property
that the area under the curve equals 1, [2, f(¢)dt = 1 respectively [, f(t)dt = 1.

In the first part of the paper we will demonstrate the concepts with the rather
simple income distribution f(t) = % — ﬁt, defined for 0 < t < 80, whose graph
is shown in Figure 3. As we will see later, starting with too complicated income
distribution functions may make the computation of Lorenz curve, Gini index, or some

other features difficult.
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Figure 3: A simple income distribution

It is not straightforward to tell what f(t) expresses. It does not express the number
or percentage of persons with income ¢. Not f(¢) itself has meaning, but only integrals
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of the form [iZ f(t), which is the percentage of the population whose income lies
between a and c. But since the rectangle with height f(¢) and width 1 is about the
area under the curve between ¢ — 1/2 and ¢ + 1/2, the number f(¢) is about the
percentage of the population with income between ¢t — 1/2 and ¢ + 1/2.

2 Density Function F' and Relative Cumulative In-
come Function Hy

We will derive two functions from f. The first one is just a special antiderivative.
The second one is expressed in terms of the first one and a second antiderivative of f.
Therefore, in order to compute both these functions F' and Hpy, f should rather be
integrable twice.

The antiderivative of f obeying F/(0) = 0, i.e. F(t) = ['_, f(s)ds is called densitiy
function of f. Since f is positive, F' is increasing. By the norming of the area under f,
F(b) = 1. F(x) expresses the percentage of the population whose income is x or less.

Let M be the number of persons considered in the income distribution. How many
people make between a — 1/2 and a + 1/27 Well, since fta:fll_/f Jo [()dl expresses the

percentage of these people, their number equals M f;:;l_/f o f (t)dt = M(F(a—1/2) —
F(a +1/2)), which is about M f(a). And how much money do these people make?
Well, it is the product of the number of people, which is about M f(a), and the amount
each gets, which is about a. Therefore this total amount is about M f(a)a. When we
ask about the total amount of money all people making less than a fixed value ¢ obtain
together, we would add all these values for integers a < ¢ to get an approximation, but
for the precise number we would need to integrate. Therefore this amount is preciely

M /st:o sf(s)ds.

Let H be the antiderivative of the function h(t) = tf(¢) with H(0) = 0, that is

Therefore M - H(t) denotes the total amount of money that all persons with income
at most t make.

However, more than in the absolute value of that money, we are interested in the
relative value of it, in the ratio of the total money M - H(t) of all persons with income
at most ¢ divided by the total amount of money M - H(b) of all persons. This ratio
is expressed by the relative cumulative income function Hy(t) = %, and gives the
percentage of the total income that is made by those whose income is limited by the
value .

Using integration by parts we get
/ L6t = LF(t) — / F(t)dt = tF(t) — (1) + C
, where ® is an antiderivative of F', a second antiderivative of f. If we choose ® with
®(0) = 0, then we get
H(t) =tF(t) — ®(t).

3



In our example f(t) = 5 —z=t, we get F(t) = ot —=-t? and B(t) = st%— 113
We also get

1 1 1 1 1 1
H(t) = tF(t) = ®(t) = —1> = ——13 — — >+ ——1 = —1> — —°
W)=t =) =350~ 500" ~ 80’ " 192000 800 0600 °

and, since H(80) = 8—??, the normed function Hy equals

3 9 L

Hy(t) = _ i
w(?) 6400 256000

These two special functions F' and Hy are shown in Figure 4.
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Figure 4: The functions I’ and Hy

Although this figure displays the functions associated with a concrete function f,
some of the features shown in this graph are typical. Both functions start at a value
of 0 at t = 0, are increasing, and reach a value of 1 at z = b. Moreover, F(t) is always
larger or equal to Hy(t)—the percentage of the persons with income less than a given
boundary exceeds the precentage of the income of these persons of the whole income.
After all, these are the poor persons.

3 Mean, Median, Mode

Mean, median, and mode are three important features of any distribution.

The median of the distribution f is that value ¢ for which ['_, f(t)dt = 1/2, i.e.
F(t) = 1/2. If the inverse F~! of the function F' can be computed, and we will later
see that this should better be the case, then the median is the value FF~1(1/2).

The mean or average is the quotient of total income M H(b) and number M
of persons considered, thus it equals value H(b) = [ tf(t)dt. If there is no upper
boundary b for the distribution considered, then the mean equals lim;_,, H ().

The mode is the value ¢ maximizing f(t). Therefore computing the mode requires
differentiation and methods to find the global maximum of a function.

In our example f(t) = % — ﬁt, the inverse of I’ can be found by solving the
equation x = F(t) = %t — @tz for t. This is done using the quadratic formula as

t = 80 — 80y/1 — x. The other theoretically possible solution ¢ = 80 + 80+/1 — x is
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not admissible since these ¢ values are larger than the upper boundary b = 80. Thus
F~1(z) = 80+ 80y/1 — z, and therefore the median equals F~1(1/2) = 80+ 80,/1/2 =

23.4. The mean equals H(80) = % ~ 26.7, and the mode is the value ¢ = 0 in this
example.

If we consider discrete descriptions of income using bar graphs, and compare mean,
median, and mode to that obtianed from a income distribution fucntion that approx-
imates the data, then the means are supposed to be close in both concepts. Actually
the smaller the intervals defining the categories are, the closer the values will be. The
same holds for the median, but not for the mode, which depends very much on the
class width, and may get rather random for small class width.

4 Lorenz Curve

For every number 0 < x < 1, let L(z) denote the proportion of the total income that
the poorest = of the population generates together. If both functions F'(¢)—which
expresses the percentage of the total population that all persons with income at most
t make— and Hy(t)—which is the percentage of the total income generated by those
persons with income at most t— are known, then we can graph the curve L easily:
All we need to do is compute the values F(t) and Hy(t) for various values of ¢, and
plot all pairs (F(t), Hy(t)). The resulting Lorenz curve connects these points. It
is a parametric curve, which means that both z- and y-coordinates of the curve are
defined as expressions x = a(t) and y = [((t) of a third variable ¢. Varying ¢ one gets
different values for z and y, and the curve consists of all pairs (a(t), 5(t)).

In our example, let’s choose t = 0,10,...,80. We get the following values for
x=F(t) and y = Hy(1):

ta=F(t) y=Hy()
0 0 0

10 0.234 0.043
20 0.438 0.156
30 0.609 0.316
40 0.75 0.5
50 0.859 0.684
60 0.938 0.844
70 0.984 0.957
80 1 1

This function can be formualted as an ordinary function y = L(z), with y equal
to an expression L(z) in z, provided the equation z = F(t) can be solved for ¢, which
means that the inverse function F~! of F' can be computed. Thus L(z) = Hy(F~(z)).
Note that F'~! is defined for 0 < 2 < 1 and is increasing.

The Lorenz curve has a few interesting properties:

e [ is increasing, since L'(x) = Hy\(F~Y(z))- F~Y(x) and both Hy and F~! are

increasing.

e [ is concave up.

Having seen already the graph of the Lorenz curve for the simple linear example
above, let us also compute the expression defining it and the corresponding Gini index.
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Figure 5: Graphing the six points
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Figure 6: The Lorenz curve

As we have already seen in Section 3, we obtain F~!(z) = 80 — 80y/1 —z = 80(1 —
V1 —z). Then

L(z) = Hy(F ()= 6400
= 31-V1I-2)?-20-vV1-2x)P=

= 36Vl —243-3r—-2+6VI—2—-64+62+2/1—2 =
— 3r—2+420/T—z.

(80(1 — VI—2))® -~ (80(1 — VI — 7)) =

256000

5 Gini Index

The Gini index is defined as the ratio of area between Lorenz curve and diagonal
and the area of the triangle under the diagonal. It is therefore twice the area between
Lorenz curve and diagonal y = .

1

G=2 (x — L(z))dx

=0
It can attain every number between 0 and 1, where a value close to 0 means that the
Lorenz curve is close to the diagonal and we have equality, whereas a value close to 1
means inequality:.



05t y A=

p &
e -

A%

o e L I
0 0.2 0.4 0.6 0.8 1

Figure 7: Twice the shaded area equals the Gini index

Note that different Lorenz curves may have the same Gini index.
For our linear income distribution example above, we get

G = 2/1_0(£L‘ — L(x))dz = 2/1_0(2 — 22 —2(1 —2)*?)dx =

4 1 4 2
_ 2= _ 5/2 — . T W
= 222"~ (1-1) \0) 22-1-2)=;=04

6 Gini Index without Lorenz Curve

Remember that if F~! can not be found easily, then the expression defining the Lorenz
curve can not be found. What about the Gini index in this case? Actually there is still
a method to compute the Gini index, which uses the definition of the Lorenz curve as
a parametric curve defined by the two functions F' and Hy.

Calculus for parametric curves is not always covered in beginning Calculus courses,
but if it is, here is a nice application. For the area under the Lorenz curve [}_, L(x)dz,
using = F(1),% = F'(t) = f(t) and the heuristic to replace dz by f(t)dt and
y = L(z) by y = Hy(t), we get we get [ Hy(t)f(t)dt. Of course this is not intended
as a serious derivation of the formula—such a derivation has to be looked up in the
textbooks. Therefore

G=1- 2/0b Ha () f(t)dt.

An example for such a distribution is f(t) = 45 — 135, defined for 0 < ¢ < 101.

Actually the area under the curve is not exactly equal to 1, we would have to multiply
the function by a constant close to 1, but this is not relevant for our purposes. We
get F(t) =In(t + 19) — 555t — In(19), a function which can not be inverted easily, and
whose inverse can not be expressed by an algebraic expression. Still the formula above

works, although it needs some effort, which we will not invest here.



7 Another example: A Quadratic Function

Let us now consider the slightly more complicated function
3 ,t—100

)= — ?

1) 100( 100 )

defined for 0 < ¢ < 100. Figure 8 displays the graph, together with the graph of the
previous linear distribution.
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Figure 8: A simple income distribution

Some high incomes larger than 80 are added, also there are more incomes of value
less than 25, but the number of incomes between 25 and 75 has decreased. Obviously
inequality has increased from the previous distribution—this should also be reflected
in Lorenz curve and Gini index.

To obtain the density function we integrate using substitution method and the

substitution v = (533%). Then we obtain

t—100

_ [ 3 =100 [ 3 5 3 _ 3
/f(t)dt—/mo( " )dt—/mou 100du = = u'+C = (—=)" + C.

Since F'(0) = 0, the get the equation 0 = (=t%2)34 (', hence the integration constant

100
(' must be equal to 1, and we get

F(t) = (
The function F' can be inverted easily. We get x = F(t)
F~Yx) = 100v/z — 1 + 100

In order to derive the other function Hy(t), we need the second derivative ®(t).
We use the same substitution and obtain ®(t) = 25(:552%)* + ¢ + C. Since ®(0) = 0,
we obtain ' = —25, and

t— 100
100

P41

t— 100,
(1) = 25((" ) — 1)+
and
(1) = 1P (1) ~(1) = 1225y )= = (E P a5((C 1)



Since H(100) = 25, we get

t — 100

L () - )

%( 100

HN(t) -

Next let’s compute mode, median, and mean. The mode is obviously again ¢ = 0.
The mean equals H(100) = 25. For the median, we have to solve the equation F'(t) =

1/2,ie. (550%)% = —1/2 or t = 100 - {/—1% + 100 = 20.63.

For the Lorenz curve function we get

L(z) = Hy(F Y (2)) = 4V —14+4) (Vo -1 - (V2 —1)*—1) =
=UVr—14+4)z-1D -V -1D"+1=3Vz - 1) +42 -3

and a Gini index of

1 1 3 9
G= 2/ (x — L(z))dz = 2/ (330 — 1) —32)dr = 23— 5 + =(~1))) = 0.420.
=0 =0
That the Gini index for the quadratic function is higher than for the linear example
confirms our initial observation of the section. The Lorenz curve lies also totally below
that for the linear example, as can be seen in Figure 12 where both Lorenz curves are

shown.
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Figure 9: The Lorenz curves for the linear and the quadratic example

8 Another example: Decreasing Exponential Func-
tions

The two examples discussed are mathematically simple, and for this reason well suited
for treatment by students in a Calculus class. But how relevant are they? What kind
of functions are used to model real-world distributions? Among the distributions that
have been used to model real-world data are Pareto distributions, that are discussed
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in the appendix, so-called log-normal distributions and gamma distributions, but also
decreasing exponential functions

f(t) = ke ™.

These functions have been proposed in [DY 2000] as a reslut of a statistical model of
money exchange. The density function is F'(t) = 1 — e™* and since limy_o F(b) = 1,
the function f is an income distribution with no maximum possible income. Thus in
this example improper integrals come into play.

We get ®(t) =t +e¥/k—1/k and

Ht)=tF(t)—®(t) =t —te ™ —t —e™/k+1/k=1/k— (t+1/k)e ™.
Since the limit of this function as t goes to infinity is 1/k, the mean is 1/k, and
Hy(t) =kH(t) =1 — (kt + 1)e™*.

The median is the solution of the equation e = 1/2, i.e. the value t = In2/k.

To get an explicit formula for the Lorenz curve finction, we need to solve the
equation © = F(t) = 1 — e ¥ for t, and get t = —In(1 — x)/k. Substituting ¢ in the
formula for Hy by this expression, we get the Lorenz function L(z) =1 — (1 —In(1 —
7))e072) =1 — (1 —In(1 — z))(1 — z), or simplified

Lz) =2+ In(l —z) — zIn(1 — ).

Note that the Lorenz curve is independent of the parameter k. Of course, L(1) is not
defined, but lim,_,; F'(z) = 1.
For the Gini index we get the improper integral

G = 2/;0(96 — L(x))dz =

= 2 /;O(x — 1) In(1l — z)dx = —2/u uln(u)du

=1

using the substitution u = 1 — x. Proceeding with integration by parts, we obtain

o, o 01,1,

G = —2(§u ln(u))‘l—/“:1 U Edu-
B 9 0 0 B 9 L g0 1
= —u lm(u)‘1 -|—/u:1 udu = (—u 1n(u)+§u )‘1 =3

9 Family Income

Since some years, statistics on individual income has been replaced by family income
in most countries. Under the assumption that all persons are married, all men and
women work, and that the most unrealistic assumption that the matching of men and
women is independent from their income (love is stronger than money), the family
income distribution can be expressed in terms of the income distribution a(z) of men
and b(x) of females. A family income of s can be achieved by s for the man and ¢ — s
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for the woman, and the probability for that (rounded) is about a(s)b(t — s). Therefore
the distribution for the family income is the so-called ‘convolution’

f(t) = /Ot a(s)b(t — s)ds.

Even if the income distributions are decreasing, the family income distribution is
typically increasing for some time, until it decreases. If we take our initial straight line
example for both men and women, a(t) = b(t) = % — ﬁt, we obtain a family density
function of

() = 1/61440000 - ¢3 — 1/128000 - t2 4 1/1600 - ¢ for 0 < ¢ < 80
| —1/61440000 - 3 + 1/128000 - t* — 1/800 - t +1/15 for 80 < ¢ < 160

Fugure 10 shows the linear individual income distribution together with the two
earners family income distribution.
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Figure 10: some family income distribution.

Both F and Hy are piecewise-defined functions, with different expressions for the
parts 0 < t < 80 and 80 < t < 160. Already in this example we get difficulties
inverting F', but using the second formula for the Gini index, we can derive a Gini
index of 0.284, substantially lower than the Gini index of 0.4 for the linear individual
income distribution functions.

In the decreasing exponential function example a(t) = b(t) = ke ** we get
t t
) = [ ke e s = [ et — e
s=0 s=0

In [DY 2001] it was shown that these functions fit the data of family income with
two earners in the US in 1996 rather well. Again the resulting function F' can not
be inverted as a closed expression, but the second formula for the Gini index yields
(G = 0.381, again smaller than the 0.5 for the individual income distribution.

Obviously independent marriage increases equality. Some people attribute increas-
ing inequality of family income in recent years to change in marriage pattern, towards
less independent marriages, the rich marry the rich and the poor the poor.
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Figure 11: Another family income distribution, together with the individual distribu-
tion.

10 Transformations

What happens if over night everyone’s income is increased by 10%? Does this make
the distribution more equal?

The function obtained from a function f by stretching by a factor k is expressed as
f(%). However, this new function is no longer a distribution—the area between curve
and x-axis equals k, since the new upper bound is kb and fokb f(B)dt =k fé’ flu)du = k.
Therefore the income distribution function after the rise is fi(t) = £ f(%).

The new density function is Fi(t) = [ fi(t)dt = [+ f(£)dt = [ f(u)du = F(u) =
F( %) It is obtained from the old one, F', by stretching horizontally with a factor of k.
The new function Hy ; is also obtained from Hy by a horizontal stretch with factor k,
since Hy(t) = [tfi(t)dt = [ £ f1(5)dt = [kuf(u)du = kH(u) = kH(%).

From these two remarks there follows that the Lorenz curve, and therefore also the
Gini index, are the same as before.
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11 Appendix: A few more distributions

11.1 Triangular Distributions

Look at the following two distributions—the quadratic one discussed in a previous
section, and another linear one. Which one is more unequal?
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Figure 12: The Lorenz curves for the linear and the quadratic example

We will discuss income distributions whose graph is a straight line between a point
on the y-axis and the point (b,0). According to the area property, these distributions
are uniquely determined by the one parameter b. The equation is

2 2
Then
2 1
F(t) = Zt— —¢?
1 1
O(t) = 2 ——

1 1 1 1
H(t) = tF(t)—®(t) = gtz — ﬁt?’ — th + @t?’ = 5:52 — @t?’,

and, since H(b) =b— %b = §7 the normed function Hy equals

Hy(t) = —t* — —t3

We can compute the Lorenz curve explicitely, since the function F' can be inverted
easily. When solving z = F(t) for ¢, we get t? — 2bt + b?z = 0, or

L(z) =31 —vV1—2)* = 2(1 = V1 —2)?,

a curve which is independent of the particular parameter b. For the Gini index we get
G =0.4.
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11.2 Trapezoid Distributions
What about distributions whose graph is a straight line between (0,a;) and (b, a3)?

Since the area under the curve equals 1 but also b““;‘”, we get b = ali@ and
a —a?
f(t) =a; + 2 1t.
Then
2 2
F(t) = a1t+ % 1 a1t2,
() = ﬂtQ a% - a%t?’,
2 12
—a? a a? — a?
H(t) = tF@t)— o) =ait® + 22— — —* - 2143 =
1) = tF() - o) a4 B 0p e G
— ﬂtQ a’g %t?),
2 6
and since
H(b) = 2a 4(a3 — ai) _ 2. 4(az —a1) 201 +4ay

+ - + - 9
(a1 4+ a2)?  3(ay+a2)?® (a1 +a2)?  3(a1+a2)?  3(a; +az)?
the normed function Hpy equals

" ~ Bay(ar 4 a9)? 5 | (a2 —ay)(ag +a2)® 4
N(t) = .
4(&1 + 2&2) 4(@1 + 2&2)

The inverse function of I is

. —4a; + \/16a% +16(a3 —a?)x  —2a; + 2\/(1% + (a3 — a?)x
= e} — a) - -

L(z) = ..

11.3 Pareto Distributions

Pareto introduced the following distribution in 1897. It has two parameters o and K,
and has no upper bound b for the domain. It is piecewise-defined as follows:

0 for0<t< K
f(t)_{ ;"a]ff for K <t

Figure 13 shows the curve for K = 20 and a = 3/2.
Integrating these functions is rather easy:

() — 0 for0<t< K
(t) = 1—(%)0‘ for K <t
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Figure 13: A Pareto distribution, K = 20, = 3/2.

F' is not a 1-1 function, but it is 1-1 for K < t. For this restricted domain, the
inverse function is

K
-1 _
F~(z) = A=
Hi) = 0 for0<t< K
() = o (£ -K) fo K<t

provided a # 1.
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