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1 Introduction

The intersection graph or the line graph Ω(H) of a hypergraph H is defined as follows:
1) the vertices of Ω(H) are in a bijective correspondence with the edges of H,
2) two vertices are adjacent in Ω(H) if and only if the corresponding edges intersect.
Characterizing and recognizing intersection graphs of hypergraphs with some additional

property P is one of the central problems in intersection graph theory.
It is well known that if the property P is closed with respect to deleting edges, then the

class of intersection graphs of members in P is closed under induced subgraphs. Then the class
can be characterized by means of a list F of forbidden induced subgraphs. If F is finite, then
it is called a finite FIS-characterization. Obviously, the recognition problem can be solved in
polynomial time provided the class Ω(P ) has a finite FIS-characterization.

A hypergraph is called k-uniform if all its edges have the same cardinality k. In a linear
hypergraph, no two edges have two vertices in common. We define Lk and Ll

k as the classes of
intersection graphs of k-uniform hypergraphs, and of linear k-uniform hypergraphs, respectively.

The classes L2 and Ll
2 (the line graphs of multigraphs and of simple graphs, respectively)

have been studied for a long time. Finite FIS-characterizations ([1], [3]) are obtained, and
efficient algorithms for recognizing these classes are known ([4], [8], [14], [16]).

The situation changes qualitatively after taking k = 3 instead of k = 2. Lovász posed the
problem of characterizing the class L3, and noted that no finite FIS-characterization exists here
[10]. It is proven in [5] that recognizing intersection graphs of linear k-uniform hypergraphs is
NP-complete for k ≥ 3. In [2], for an arbitrary constant k, a characterization of Lk in terms of
clique coverings which is a generalization of the well known Krausz theorem [7] characterizing
Ll

2 is given. Such so-called Krausz characterizations are useful, but do not solve the recognition
problem, since here one must look over all clique coverings of an arbitrary graph G.
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2The second author gratefully acknowledges support by the ‘Wilhelm-Blaschke-Gedächtnis-Stiftung’, and by
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Actually recognizing graphs in Lk is NP-complete for k ≥ 4 [15]. The question whether or
not members of L3 can be recognized efficiently is still open, but recognizing intersection graphs
of 3-uniform simple hypergraphs is NP-complete as well [15].

In 1980 R.N. Naik, S.B. Rao, S.S. Shrikhande, and N.M. Singhi proved the existence of a
finite FIS-characterization of graphs in Ll

3 with bound on minimum vertex degree δ(G) ≥ 75
[12]. In 1982 the same authors reduced their bound to δ(G) ≥ 69 [13]. In [11] an algorithm
recognizing G ∈ Ll

3 in polynomial time under the condition δ(G) ≥ 19 is proposed and a finite
FIS-characterization of the class of graphs handled is obtained. The same recognition problem
is independently solved in [6].

An algorithm solving this problem under the condition δ(G) ≥ 13 is proposed in this paper.
The complexity of the algorithm is O(nm), where n and m are the number of vertices and edges,
respectively. Whether or not a finite FIS-characterization of the graphs considered exists is still
open.

Similar results for k ≥ 4 cannot be expected, since the following two theorems hold.
Theorem [11]. For k ≥ 4 and an arbitrary constant δ, the set of all graphs G in Ll

k with
minimum degree at least δ has no finite FIS-characterization.

Theorem [5]. For any δ, the problem to test membership in Ll
4 is NP-complete for graphs

of minimum degree δ.

2 Main Tools

All graphs considered are finite, undirected and have no loops and multiple edges.
The vertex set of a graph G is denoted by V G. If N(v) = NG(v) is the neighborhood of a

vertex v in G, then N [v] = N(v)∪ {v}, deg(v) = |N(v)| is the degree of v, δ(G) is the minimum
vertex degree of G.

An arbitrary subset of pairwise adjacent vertices in a graph is called a clique. A maximal
clique (or simply maxclique) is maximal with respect to inclusion. For a positive integer k,
a k-clique (or ≥ k-clique) is a clique with exactly (at least) k vertices, and k-maxcliques and
≥ k-maxcliques are defined analogously.

A family Q = {C1, C2, . . . , Cq} of cliques of a graph G is called a Krausz k-partition with
clusters Ci if the following conditions hold:

1) every edge of G belongs to exactly one cluster Ci,
2) every vertex of G belongs to at most k clusters of Q.
A fragment is any subfamily of some Krausz k-partition. A vertex is covered by a fragment

if it is contained in some cluster of the fragment. An edge is covered by a fragment if both of
its vertices belong to the same cluster in the fragment. A Krausz-extension of a fragment is any
Krausz k-partition containing the fragment.

The algorithm below uses any of the algorithms for recognizing line graphs ([4], [8], [16]) and
is based on the following two facts.

Theorem 1 [2]. A graph belongs to the class Ll
k if and only if there exists a Krausz k-partition

of the graph.
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Lemma 2 ([13], [9], [5], [6]). Each ≥ (k2 − k + 2)-maxclique of a graph is a cluster of any its
Krausz k-partition.

From now on we only consider the case k = 3. We omit k and write “Krausz partition”. We
call a ≥ 8-clique large, and a 6- and 7-clique prelarge.

We assume throughout Lemma 3 to Lemma 10 that G ∈ Ll
3, F is a fragment in G and Q

is a Krausz-extension of F . In Lemma 6 the case F = ∅ is not excluded, Q is an arbitrary
Krausz-partition here.

Lemma 3 . If a vertex v is covered by exactly two clusters C1 and C2 in F and C = N(v) \
(C1 ∪ C2) 6= ∅, then C ∪ {v} is a cluster in Q. 2

Lemma 4 . Let Ci be a cluster in F , |Ci| ≥ 4, C be a clique in G and C 6⊆ Ci. Then
|C ∩ Ci| ≤ 3. In particular Ci is a maxclique.

Proof: If x is a vertex in C \Ci, then all edges xy with y ∈ Ci ∩C must be covered by different
clusters, whence there are at most three of them. 2

We say that a clique C touches a clique D (in a vertex v) if C ∩D = {v}. A clique touches
a fragment F if the clique touches some cluster in F .

Put H = G−EF where EF is the set of edges covered by F . In what follows Nk[a] = NH
k [a]

is the ball of radius k with center a in H,

Nk(a) = Nk[a] \ {a}, Nk{a} = Nk[a] \Nk−1[a].

Lemma 5 . Every prelarge maxclique in H touching F is a cluster in Q.

Proof: Let C be a maxclique in H, C1 ∈ F and C1 ∩ C = {v}. Then

C ⊆ C2 ∪ C3, C2, C3 ∈ Q, C2 ∩ C3 = {v}.
Suppose C 6= C1 and C 6= C2. Then C 6⊆ Ci, i = 1, 2. Lemma 4 implies |C ∩ C1|, |C ∩ C2| ≤ 3
and therefore |C| ≤ 5. 2

Lemma 6 . Let C be a maxclique in H, and a ∈ V H \C. Furthermore, let C contain a vertex
adjacent to a and at least five vertices not adjacent to a. Then C ∈ Q \ F .

Proof: Assume that C is not contained in a cluster in Q \ F and let b ∈ C be a vertex adjacent
to a. Then C ⊆ N1[b] and N1[b] is the union of at most three clusters in Q \F containing b. Let
C1 be one of them, a ∈ C1. So five vertices not adjacent to a must be contained in the union of
two other clusters. The vertex b belongs to both of them, a contradiction with Lemma 4. Then
the maximality of the ≥ 6-clique C and Lemma 4 prove the statement. 2

Remark. Lemma 6 is interesting in the case when C is a prelarge clique. Then the conditions
in the lemma require
We call a clique C containing a non-covered vertex b b-good, and the vertex b good if one of the
conditions holds:
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1. C is a large clique of H,

2. C is a prelarge clique of H touching F ,

3. C is such as in Lemma 6 (Remark).

Lemma 7 . Let a and b be adjacent vertices of H, and a be covered by F , b be non-covered by
F . If degG(b) ≥ 15, then b is a good vertex.

Proof: Without loss of generality assume that b neither belongs to a large clique in H nor to
a prelarge clique in H touching F . The fragment Q \ F contains a cluster C1 covering both a
and b. Since C1 touches F , then |C1| ≤ 5. But deg(b) ≥ 15 so there exists a cluster C2 in Q
such that b ∈ C2, |C2| = 7. If N1(a) ∩ C2 6= {b} = C1 ∩ C2, then there exists a cluster C3 in Q
containing a. One has |C2 ∩ C3| ≤ 1. So |C2 ∩N1(a)| ≤ 2, C2 is b-good, b is good. 2

We say that an (F, a)-condition holds if, for some vertex a, the following is valid:

1. δ(G) ≥ 13,

2. a is covered by F ,

3. there exists a non-covered neighbor of a, but none of them is good.

A pair (C1, C2) of maxcliques in H is called an (F, a)-pair if it satisfies the conditions:

1. |C1 ∩ C2| = {a},
2. C1 ∪ C2 = N1[a],

3. |Ci| = 4 or 5, i = 1, 2.

For an arbitrary (F, a)-pair P = (C1, C2), a t-tuple T = (C1, C2, C3, . . . , Ct) of maxcliques Ci in
H is called an (F, a)-tuple associated with P (or simply (F, a)-tuple) if it satisfies the following
conditions 1–6.

1. 5 ≤ |Ci| ≤ 6, i = 3, . . . , t.

2. Each vertex v ∈ N1(a) belongs to exactly three cliques of T .

3. If a vertex v belongs to exactly two cliques Ci and Cj , i 6= j, then Dv = (N1(v) \ (Ci ∪
Cj)) ∪ {v} is a clique.

Adding each clique Dv with more than one vertex to T we obtain the closure T of T .

4. Each two cliques of T have at most one common vertex.

5. No vertex v ∈ V G belongs to more than three cliques of T .

6. If v belongs to three cliques of T , then N1[v] is precisely the union of these cliques.
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Lemma 8 . Let an (F, a)-condition hold. Then
1) 13 ≤ deg(b) ≤ 14 for every non-covered neighbor b of a,
2) there is an (F, a)-pair contained in Q \ F .

Proof: Statement 1) follows by Lemma 7 and δ(G) ≥ 13. For 2) consider any noncovered
neighbor b of a. The edge ab is contained in some cluster C1 ∈ Q \ F . Since b is not good,
|C1| ≤ 5. We claim that b belongs to no 7-cluster. Otherwise, by Lemma 6, this clique would
contain at least three neighbors b, b2, b3 of a. The edges ab, ab2, ab3 would have to be in different
clusters, a contradiction to a being in just three of them. By Lemma 7, deg(b) = 13 or 14.
Hence |C1| ≥ 4 and there exist two more clusters

C3, C4 ∈ Q \ F, b ∈ Ci, i = 3, 4, |C3| = 6, |N1(a) ∩ C3| ≥ 2.

No vertex in C3 is covered by F , for otherwise b would be good. Let C3 ∩N1(a) ⊇ {w, b}. Then
there exists the fourth cluster C2 ∈ Q \ F containing a,w. The vertex w is adjacent to a and
non-covered by F , so deg(w) = 13 or 14, and |C2| = 4 or 5. Obviously, (C1, C2) is an (F, a)-pair.
2

Lemma 9 . Let an (F, a)-condition hold and H have at least two (F, a)-pairs. Then
1) N1(a) has no vertex covered by F ;
2) 13 ≤ deg(v) ≤ 14 for any v ∈ N1(a);
3) H has an (F, a)-tuple T = (C1, C2, . . .) contained in Q \ F ;
4) for any (F, a)-tuple T ′ = (C ′

1, C
′
2, . . .) different from T , the pairs (C1, C2), (C ′

1, C
′
2) are

different;
5) if H has more than one (F, a)-tuples, then every vertex α ∈ N2{a} belongs to at least two

cliques in each (F, a)-tuple.

Proof: We have 6 ≤ |N1(a)| ≤ 8. Let P = (C1, C2), P ′ = (C ′
1, C

′
2) be different (F, a)-pairs, and

by Lemma 8 we may assume P ⊆ Q \ F . Further distinguish the cases |N1(a)| = 6, 7, 8.
I. |N1(a)| = 6. Without loss of generality assume that

C1 = {a, b, c, d}, C2 = {a, x, y, z}, C ′
1 = {a, b, x, y}, C ′

2 = {a, c, d, z}. (1)

Since F ∪ P ⊆ Q and since C ′
1, C

′
2 lie in H, H has the edges bx, by, cz and dz, and no two

of them belong to the same cluster. So we have distinct clusters Cbx, Cby, Ccz, Cdz ∈ Q \ F ,
where here and in the following Cuv denotes the cluster containing u, v ∈ N1(a). The vertices b
and z are contained in three clusters in Q \ F and therefore they are not covered by F . Hence
deg(b) = deg(z) = 13 and |Cuv| = 6 for any of the four clusters mentioned above. By Lemma
5 no v ∈ NH(a) is covered by F . As in the proof of Lemma 8, c cannot lie in a 7-cluster, thus
deg(c) = deg(d) = 13. Using Lemma 6 there exist two more 6-clusters of the forms Ccu and Cdv

with u 6= v, say Ccx and Cdy. Obviously, the 8-tuple

T = (C1, C2, Cbx, Cby, Ccz, Cdz, Ccx, Cdy) (2)
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is an (F, a)-tuple contained in Q \ F .
The bipartite graph induced by the edges of H mentioned above is shown in Figure 1,a.
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Figure 1

II. |N1(a)| = 7. Arguing as above, assume

C1 = {a, b, c, d, e}, C2 = {a, x, y, z}, C ′
1 = {a, b, c, x, y}, C ′

2 = {a, d, e, z}. (3)

We obtain the bipartite graph shown in Figure 2,a and the 8-tuple

(C1, C2, Cbx, Cby, Ccx, Ccy, Cdz, Cez)

contained in Q\F . We have |Cuv| = 6 for each u, v ∈ N1(a); deg(b) = deg(c) = 14, deg(z) = 13;
no vertex in N1(a) is covered by F . Further 13 ≤ deg(d) ≤ 14 since d is not good. Hence there
is one more cluster Cd containing d; |Cd| < 6 since d is not good and |N1(a) ∩ Cd| = 1. So
|Cd| = 5. Analogously for e, |Ce| = 5.

Thus,
T = (C1, C2, Cbx, Cby, Ccx, Ccy, Cdz, Cez, Cd, Ce) (4)

is an (F, a)-tuple contained in Q \ F .
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Figure 2

III. |N1(a)| = 8. Arguing as above, put

C1 = {a, b, c, d, e}, C2 = {a,w, x, y, z}, C ′
1 = {a, b, c, w, x}, C ′

2 = {a, d, e, y, z}, (5)

obtain the bipartite graph shown in Figure 3,a and the (F, a)-tuple

T = (C1, C2, Cbw, Cbx, Ccw, Ccx, Cdy, Cdz, Cey, Cez) (6)

contained in Q \ F . We have

5 ≤ |Cuv| ≤ 6, 13 ≤ deg(v) ≤ 14

for v ∈ N1(a).
The statements 1)–3) are proved for any case.
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Figure 3

4) Let there exist another (F, a)-tuple T ′(6= T ) associated with the pair P = (C1, C2). It
is proved above that fixed different pairs P and P ′ uniquely (up to notation) define the lower
indices of cliques in T , i.e. the vertices in N1(a) contained in these cliques. So the graphs shown
in Figures 1,a–3,a are defined. Thus, in the case I, for example, T ′ has the form

T ′ = (C1, C2, C
′
bx, C ′

by, C
′
cz, C

′
dz, C

′
cx, C ′

dy).

The 6-clique C ′
bx touches the cluster C1 in vertex b, and then is contained in Q \F as Cbx. Both

the cliques contain the edge bx and therefore coincide. The same holds for all other cliques,
hence T ′ = T . Analogously for the case III. In the case II C ′

uv = Cuv, and each of the cliques
C ′

d, Cd complements (C1 ∪C ′
dz) = (C1 ∪Cdz) to N1[d] and, consequently, C ′

d = Cd. Analogously
for Ce and C ′

e.
5) Let T ′ be an (F, a)-tuple different from T and associated with the pair P ′ = (C ′

1, C
′
2).

Then the pairs P, P ′ are different and one can assume that C ′
1, C ′

2 are defined by one of the
equalities (1), (3), (5). Then T has the form (2), (4), (6), respectively. We have

T ′ = (C ′
1, C

′
2, C

′
bc, C

′
bd, C

′
xc, C

′
xz, C

′
yd, C

′
yz),

T ′ = (C ′
1, C

′
2, C

′
bd, C

′
be, C

′
cd, C

′
ce, C

′
xz, C

′
yz, C

′
x, C ′

y),

T ′ = (C ′
1, C

′
2, C

′
bd, C

′
be, C

′
cd, C

′
ce, C

′
wy, C

′
wz, C

′
xy, C

′
xz),

respectively. Further the necessary statement is verified directly. Let, for example, in the case
II α ∈ Cd. Hence α ∈ C ′

bd ∪ C ′
cd (see Fig. 2,b). Let, for example, α ∈ C ′

bd. Then α ∈ Cbx ∪ Cby.
The same for T ′. 2
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Lemma 10 . If an (F, a)-condition holds, then the set F∪T ′ is a fragment for every (F, a)-tuple
T ′.

Proof: Let T be an (F, a)-tuple constructed in Lemma 9, i.e. contained in Q \ F , and T ′ be an
arbitrary (F, a)-tuple different from T . Put R = Q \ (F ∪ T ) and prove that Q′ = F ∪ T ′ ∪R is
a Krausz-partition of G. The ball N2[a] coincides with the union of all cliques in T ′ as well as
with the union of all clusters in T . The analogous statement is true with respect to N3[a], T ′
and T . Therefore only the vertices of N3{a} can belong to the cliques both in T ′ and R.

Thus, a nontrivial situation occurs only in these vertices. Let v ∈ N3{a}. If v belongs to
three cliques D1, D2, D3 of T (or T ′), then N1[v] \ (D1 ∪ D2 ∪ D3) = ∅, so v belongs to no
clique of R. The conditions in definition of Krausz-partition could be violated only if v belongs
to exactly one clique D in T and two cliques D′

1 and D′
2 in T ′. In this case, clearly, D coincides

with the set N1[v]∩N3[a]. Let ET and H(ET ) be the set of edges contained in cliques of T and
the graph induced by ET , respectively. Denote by detT (α) the degree of α in the graph H(ET ).

If one more vertex u belongs both to N3{a} and D, then the pair {u, v} must be contained
both in D′

1 and D′
2. So v is the unique vertex contained both in N3{a} and D.

Let

D = {v, α1, . . . , αp, . . . , αk}, D′
1 = {v, α1, . . . , αp}, D′

2 = {v, αp+1, . . . , αk}.
The definition of T and T ′ implies

|D| = degH−ET (α1) + 1, |D′
1| = degH−ET ′(α1) + 1, |D′

2| = degH−ET ′(αk) + 1.

We have |D| > |D′
1|, consequently, degT (α1) < degT ′(α1). By Lemma 9, α1 belongs (in the

situation considered) to exactly two cliques both in T and T ′ of orders 5 or 6. Therefore

degT ′(α1)− degT (α1) ≤ 2 · 5− 2 · 4 = 2.

Further we have

|D′
2| = |D| − |D′

1|+ 1 = degH−ET (α1)− degH−ET ′(α1) + 1 = degT ′(α1)− degT (α1) + 1 ≤ 3.

So degH−ET ′(αk) = |D2| − 1 ≤ 2. Finally, since αk is not covered by F ,

degG(αk) = degH(αk) = degT ′(αk) + degH−ET ′(αk) ≤ 2 · 5 + 2 = 12.

2

3 Algorithm

Before giving the formal algorithm, let us outline the idea of our approach.
Assume we have some nonempty set F of cliques, which is a fragment if and only if G ∈ Ll

3.
For example, by Lemma 2, all large maxcliques must be members of all Krausz-partitions, thus
an arbitrary set of large maxcliques can stand for F .
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If every vertex is covered by some element of F , we are almost done, as has been shown
in [11], [6]. Things become slightly easier if we assume that every vertex is covered by 1 or
3 elements of F , but this can be achieved by Lemma 3. Now we delete all edges covered by
members of F , and the resulting graph is a line graph if and only if G ∈ Ll

3. Note that the large
maxcliques cover the vertex set of graphs in Ll

3 of minimum degree at least 19.
For graphs in Ll

3 of smaller minimum degree, the large maxcliques do not have to cover the
vertex set. Anyway we start with a nonempty set F of cliques in G. Then the algorithm extends
F adding one or more cliques on each step. Besides the following two conditions are quaranteed
if G ∈ Ll

3:

• the set Fk+1 obtained on step k + 1 is a fragment if and only if Fk is a fragment,

• if Fk is a fragment and G has a vertex noncovered by Fk, then one can fulfil step k + 1.

Thus the algorithm constructs a fragment F ′ covering all vertices if and only if F is a fragment.
Moreover, each vertex belongs to 1 or 3 clusters in F ′.

So it remains to choose an initial set F . If there is a large maxclique C in G, then we put
F = {C}. Otherwise there is a prelarge maxclique C containing some fixed vertex z which is
included to F . In the latter case, if the algorithm fails to construct an appropriate fragment F ′

or the graph G− EF ′ is not a line graph, then G has no Krausz-partition with C as a cluster.
Therefore take as C another prelarge maxclique containing z. At worst one must look over all
prelarge maxcliques containing z.

Algorithm 11 .
Instance: A connected graph G with δ(G) ≥ 13.
Question: Is G the intersection graph of some linear 3-uniform hypergraph?

During the algorithm every vertex v of a current graph possesses some non-negative
integer weight w(v) and can be labelled. Let H and F be a current graph and a current
fragment, respectively.

Routine

(1) Find and fix a vertex z of maximum degree in G.

(2) Check whether G contains some large maxclique as follows:

(2.1) For any S ⊆ NG(z), |S| = 19, S must contain a 7-clique K. Extend K ∪
{z} to a maximal clique C.

(2.2) If degG(z) ≤ 18, then we check within the neighborhood of each vertex in
V G.

(3) Initialisation:

(3.1) If G has a large maxclique C, then we start with F = {C}.
(3.2) If G has no large maxclique, then there is a prelarge maxclique C containing

z. Put F = {C}.
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(3.3) H := G− EF,

(4) While there exists a vertex v with w(v) = 0 do:

(4.1) Fix a leading vertex a which is a non-labelled vertex with w(v) > 0.

(4.2) Find a good vertex in N1(a) as follows:

(4.2.1) Find a vertex b with w(b) = 0 in N1(a). If there exists no such vertex,
then label a and go to (4.1).

(4.2.2) Check whether b is good as follows:

(a) For any S ⊆ NG(b), |S| = 19, S must contain a 7-clique and, consequently,
b is good.

(b) If |N1(b)| ≤ 18, then b is good if and only if there exists a b-good
clique in N1[b].

(4.2.3) If b is not good, then choose another vertex in (4.2.1).

(4.3) If there exists a good b ∈ N1(a), then find a b-good clique Cb. Put F :=
F ∪ {Cb}. Perform Subroutine(Cb).

(4.4) If there is no good vertex in N1(a), then the conditions 6 ≤ |N1(a)| ≤ 8
and, for any b ∈ N1(a), |N1(b)| ≤ 14 must hold. There must exist an (F, a)-pair
P = (C1, C2) in N1[a].

(4.5) If P is a unique (F, a)-pair in N1[a], then put F := F∪P. Perform Subroutine(C1, C2).

(4.6) If there are at least two (F, a)-pairs, then there exist an (F, a)-tuple T =
(C1, . . . , Ct) in N2[a]. Put F := F ∪ T. Perform Subroutine(C1, . . . , Ct).

(5) The resulting graph H must have some Krausz 2-partition J. F∪J is a Krausz
3-partition of G.

Subroutine(C1, C2, . . . , Cp).

(S.1) H := H − EF.

(S.2) For any v ∈ ⋃p
i=1 Ci, perform w(v) := w(v) + |{Ci : v ∈ Ci, i = 1, 2, . . . , p}|.

(S.3) For any v ∈ V G, the condition w(v) ≤ 3 must hold.

(S.4) For any v ∈ V G, if w(v) = 3, then the condition N1(v) = ∅ must hold.

(S.5) Fix a vertex u ∈ V G with w(u) = 2. The set N1[u] must be a clique. Put F :=
F ∪ {C} where C = N1[u]. Perform Subroutine(C).

If some of the conditions in Subroutine and Routine does not hold, then either G 6∈ Ll
3 (if

there exists a large clique in G), or we have to try another initialisation (if there is no large
clique in G). If all initialisations fail, then G 6∈ Ll

3.

Theorem 12 . Algorithm 11 is correct and can be implemented to run in time O(nm).
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Proof: The correctness follows by the results of the previous section.
We considered a graph to be defined by List of Adjacency in which the neighborhood of each

vertex is ordered by the increment of indices of its vertices. But simultaniously we operate with
Adjacency Matrix. We delete edges ( i.e. change the current graph) simultaniously in List and
Matrix. Matrix is used in Algorithm only for checking whether a is adjacent to b. In Matrix it
requires a constant time whereas in List it can be done in min{deg(a), deg(b)}.

Finding a vertex of maximum degree requires linear time. Checking whether a 20-vertex
graph contains some 8-clique requires only constant time. Extending a clique to a maximal
clique can be done in time O(m). So Steps (1)–(3) require O(m) time.

We can find a leading vertex (Step (4.1)) in time O(n). Finding a good vertex in the
neighborhood of a leading vertex (Step (4.2)) requires O(n) time. (Since checking whether a
0-weighted vertex is good requires only a constant time.) For a good vertex b, finding a b-good
clique Cb (Step (4.3)) can be done in time O(m). Finding an (F, a)-pair (Step (4.4)) requires
a constant time. Finding an (F, a)-tuple (Step (4.5)) can be done in time O(m) since in this
case N2[a] contains a constant number of vertices. Adding a constant number of cliques to F
requires a constant time.

After choosing a leading vertex, we either label it or increase the number of vertices covered
by F . Each vertex is labelled at most once. Hence we perform Step (4.1) at most 2n times. So
the operations performed by Routine properly (without Subroutine) require O(nm) time.

Now turn to Subroutine. Clearly, each of (S.1) and (S.5) can be implemented in time O(m)
while (S.2)-(S.4) require O(n) time. Hence a single performing Subroutine can be done in time
O(m). Step (S.3) guarantees that F contains at most 3n cliques. Subroutine is performed only
if at least one clique is added to F . So during the algorithm Subroutine performs at most 3n
times. Therefore the summarized time for performing Subroutine as many times as the algorithm
prescribes is O(nm).

Line graphs can be recognized in linear time ([8], [16]).
Since the algorithm at worst has

(18
6

)
initialisations, it can be implemented in time O(nm).

2
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